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Abstract
We describe an open problem: reduce offline nonconvex stochastic optimization to regret minimiza-
tion in online convex optimization. The conjectured reduction aims to make progress on explaining
the success of adaptive gradient methods for deep learning. A prize of $500 is offered to the winner.

1. Introduction

Adaptive gradient methods are the most widely used optimization algorithms for training deep neu-
ral networks.1 The theory for these algorithms, starting from AdaGrad (Duchi et al., 2011; McMa-
han and Streeter, 2010), is often rooted in regret minimization in the context of online convex
optimization (OCO) (Hazan et al., 2016).

The regret bounds of AdaGrad in the convex setting can be better or worse than those of stochas-
tic gradient descent (SGD), up to the square root of the dimension factor, depending on the data.
This advantage can be very significant, as the dimension in deep neural network training is ex-
tremely large, and it could explain the performance improvements of adaptive optimizers in training
deep neural networks.

However, the regret guarantees of AdaGrad imply faster convergence only for convex optimiza-
tion. For nonconvex optimization, a different reduction from regret minimization to optimization is
required, and this is the subject of this open problem.

1.1. Related work

The analysis of adaptive gradient methods spans thousands of publications, and we omit a detailed
survey in this open problem statement. Some recent advancements in the analysis of AdaGrad and
related methods appear in Ward et al. (2019); Li and Orabona (2019); Zaheer et al. (2018); Défossez
et al. (2022); Faw et al. (2022); Zhou et al. (2020). These results directly analyze the convergence
of adaptive gradient methods to stationary points, rather than by reduction from regret in OCO.

There are a few benefits of a black-box reduction compared to a direct analysis:

• The convex world is simpler to analyze and we have tight regret bounds for many settings, in
contrast to the more complex and general nonconvex optimization landscape.

• The best known regret bounds for OCO would imply faster rates for AdaGrad (and related
methods) in certain scenarios than known by direct analysis.

1. At the time of writing, the Adam algorithm is one of the most widely cited research in the history of science (scholar
article)
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2. Problem statement

Assume we are given an algorithm A for OCO, that has a guaranteed worst case regret bound.2

Given a convex constraint set K ⊆ Rd and an arbitrary sequence of convex cost functions f1, .., fT :
K 7→ R, the algorithm guarantees that

T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x
⋆) ≤ RegretT (A).

For example, the online gradient descent (OGD) algorithm guarantees RegretT (OGD) ≤ 3
2GD

√
T ,

where D is the diameter of K in ℓ2 norm, and G is an upper bound on the Lipschitz constant of
{ft}Tt=1. We are the most interested in the regret guarantee’s dependence on the time horizon and
dimension.

The problem is to design a black box-reduction from offline stochastic nonconvex optimization
to OCO with a guaranteed performance that depends on the regret of A. The performance metric
we target is the average gradient norm across iterations, which is also the metric for finding an
approximate stationary point. We make the following assumptions on the nonconvex objective
function f : Rd 7→ R, and for the sequel, ∥ · ∥ denotes the ℓ2 norm of a vector.

Assumption 1 The function f is β-smooth: it is differentiable and for all x, y ∈ Rd,

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥.

Assumption 2 The function f satisfies that for all x, y ∈ Rd, f(x)− f(y) ≤ M .

We have access to a stochastic gradient oracle O that is unbiased and has bounded variance.

Definition 3 Let O : Rd → Rd denote the stochastic gradient oracle, where given x, O outputs a
gradient estimator ∇̃f(x): O(x) = ∇̃f(x).
We assume that the stochastic gradient oracle outputs gradient estimators that are unbiased.

Assumption 4 For any x ∈ Rd, E[∇̃f(x)] = ∇f(x).

We would like to obtain a sequence of points x1, ...,xT ∈ Rd such that

1

T

T∑
t=1

E
[
∥∇f(xt)∥2

]
≤ O

(√
Mβ · RegretT (A)

T

)
. (1)

The convergence rate of SGD for smooth nonconvex optimization is known to be O
(
σ
√

βM
T

)
(Ghadimi and Lan, 2013), where σ2 is an upper bound on E[∥∇̃f(x) − ∇f(x)∥2]. The theorem
recovers this rate when using the lazy variant of Online Gradient Descent and its regret bound from
Hazan and Kale (2010), as spelled out in section A.1. Plugging in the regret bound of AdaGrad
in the conjectured equation (1) would give a similar rate in terms of the number of iterations, i.e.
1√
T

. However, in terms of the dimension, the regret bound of Adagrad would imply convergence up

to
√
d faster, since the variance term will be replaced by a non-Euclidean notion of variance. This

would also apply to Adam (Kingma and Ba, 2014) and most other adaptive gradient methods whose
theory is based on regret in OCO.

2. We assume this regret bound is deterministic for simplicity, but generalizations can be considered similarly.
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2.1. Constrained vs. unconstrained optimization

For nonconvex optimization over a constrained set, it is in general computationally hard to find a
point with small gradient norm (Hazan et al., 2017). Therefore, the standard assumption in non-
convex optimization is unbounded domain and bounded function value which notably excludes
non-trivial convex functions. Alternatively, other solutions have been proposed such as bounding
the projected gradient (Hazan et al., 2017).

Several of the reduction proposals we outline henceforth is from online strongly convex opti-
mization, where known regret bounds do not directly depend on the diameter of the domain.

3. Existing and recent progress

A reduction similar to the one proposed was put forth in previous works (Paquette et al., 2018; Wang
and Srebro, 2019; Agarwal et al., 2019). This reduction is episodic, and an algorithmic template
from Agarwal et al. (2019) is presented in Algorithm 1.

Algorithm 1 Nonconvex to convex reduction
Input: OCO algorithm A, β-smooth objective f , stochastic gradient oracle O, parameters λ,w
for k = 1 to K do

Let fk(x) = f(x) + λ
2∥x− xk∥2 be the regularized loss of the k-th epoch.

Apply A to obtain xk+1 after w steps of the algorithm starting from xk, using O.
end for
return xk∗ such that k∗ = argmink∥∇f(xk)∥.

Theorem A.2 of Agarwal et al. (2019) 3 gives a provable convergence rate for this reduction in
terms of the number of stochastic oracle calls (Kw) and the regret4 of the OCO algorithm A. It
is, however, unsatisfactory since the regret is taken over parts of the sequence rather than the entire
sequence, and other subtleties.

Notable progress has been made recently by Cutkosky et al. (2023), who give a black-box
reduction with provable guarantees. Instead of regularizing the losses to be strongly convex, their
reduction leverages online learning over linearized losses to ”predict” an update direction. However,
their approach implies a bound close to that of Equation (1) but with the adaptive regret notion of
Hazan and Seshadhri (2009) rather than regret.

A non-episodic variant of Algorithm 1 was attempted by Chen et al. (2023), where the following
procedure was studied in the finite-sum setting:

3. It is sometimes referred to in the COLT community as “Naman’s Lemma”.
4. The actual lemma is phrased in terms of optimization performance, but it can be rephrased in terms of regret.
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Algorithm 2 Nonconvex to convex reduction, second variant
Input: OCO algorithm A, β-smooth objective function f(x) = 1

n

∑n
i=1 fi(x).

for t = 1 to T do
Let ft(x) be the loss function defined by the t-th batch of examples.
Let f̃t(x) = ft(x) + β∥x− xt−1∥2 be the strongly convex regularized loss.
Apply a single step of A to obtain xt+1 = A(f̃1, .., .f̃t).

end for
return xt∗ such that t∗ = argmint∥∇f(xt)∥.

A similar bound to (1) can be obtained, but with the dynamic regret notion instead regret. Dy-
namic regret is intimately related to adaptive regret, as adaptive regret can be reduced to dynamic
regret. This reduction is perhaps the most direct, in the sense that applying it with AdaGrad (or
Adam or any other adaptive gradient method) is exactly running it on the regularized nonconvex
function with stochastic gradients. The guarantee is stated in the lemma below, and the proof is in
the appendix.

Let DynamicRegretA(f1:T , x̂1:T ) denote the dynamic regret of algorithm A over a sequence of
functions, f1, ..., ft, under the sequence of comparators (x̂1, . . . , x̂T ), i.e.

DynamicRegretA(f1:T , x̂1:T ) =
T∑
t=1

(ft(xt)− ft(x̂t)) .

We further assume that we have independent batches at every time step, a standard assumption
in stochastic optimization.

Assumption 5 The set of batches that we receive at each time step is dependent of each other, and
also of the iterates xt.

Lemma 6 Let x∗
t denote a minimizer of f̄t(x) = f(x) + β∥x − xt−1∥2. Then the iterates xt in

Algorithm 2 satisfy

1

T

T∑
t=1

E
[
∥∇f(xt)∥2

]
≤ 6β

T

(
M + E

[
DynamicRegretA(f̃2:T+1,x

∗
2:T+1)

])
,

where the expectation is taken over the randomness of the batches and the algorithm A.

It is more subtle to bound the dynamic regret, and it is more difficult to derive optimization
guarantees using this notion.

4. The Prize

We offer $500 for an efficient black-box reduction giving the bound (1).
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Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. Transactions on Machine Learning Research, 2022. ISSN 2835-8856.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

Matthew Faw, Isidoros Tziotis, Constantine Caramanis, Aryan Mokhtari, Sanjay Shakkottai, and
Rachel Ward. The power of adaptivity in sgd: Self-tuning step sizes with unbounded gradients
and affine variance. In Po-Ling Loh and Maxim Raginsky, editors, Proceedings of Thirty Fifth
Conference on Learning Theory, volume 178 of Proceedings of Machine Learning Research,
pages 313–355. PMLR, 02–05 Jul 2022.

Saeed Ghadimi and Guanghui Lan. Stochastic first- and zeroth-order methods for noncon-
vex stochastic programming. SIAM Journal on Optimization, 23(4):2341–2368, 2013. doi:
10.1137/120880811.

Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by variation
in costs. Machine learning, 80:165–188, 2010.

Elad Hazan and Comandur Seshadhri. Efficient learning algorithms for changing environments. In
Proceedings of the 26th annual international conference on machine learning, pages 393–400,
2009.

Elad Hazan, Karan Singh, and Cyril Zhang. Efficient regret minimization in non-convex games. In
International Conference on Machine Learning, pages 1433–1441. PMLR, 2017.

Elad Hazan et al. Introduction to online convex optimization. Foundations and Trends® in Opti-
mization, 2(3-4):157–325, 2016.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Xiaoyu Li and Francesco Orabona. On the convergence of stochastic gradient descent with adaptive
stepsizes. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings of the Twenty-
Second International Conference on Artificial Intelligence and Statistics, volume 89 of Proceed-
ings of Machine Learning Research, pages 983–992. PMLR, 16–18 Apr 2019.

5



CHEN HAZAN

H Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex opti-
mization. arXiv preprint arXiv:1002.4908, 2010.

Courtney Paquette, Hongzhou Lin, Dmitriy Drusvyatskiy, Julien Mairal, and Zaid Harchaoui. Cat-
alyst for gradient-based nonconvex optimization. In Amos Storkey and Fernando Perez-Cruz,
editors, Proceedings of the Twenty-First International Conference on Artificial Intelligence and
Statistics, volume 84 of Proceedings of Machine Learning Research, pages 613–622. PMLR,
09–11 Apr 2018.

scholar article. Google scholar reveals its most influential papers for 2020.

Weiran Wang and Nathan Srebro. Stochastic nonconvex optimization with large minibatches. In
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Appendix A. Proof of Lemma 6

Proof Let Ef̃t
denote the expectation taken over the random batch in the definition of f̃t . We have

the following descent lemma:

f(xt−1)− f(xt) = f̄t(xt−1)− f̄t(xt) + β∥xt−1 − xt∥2

= Ef̃t

[
f̃t(xt−1)− f̃t(xt)

]
+ β∥xt−1 − xt∥2 (xt is independent of f̃t)

≥ Ef̃t

[
f̃t(xt−1)− f̃t(x

∗
t )− (f̃t(xt)− f̃t(x

∗
t ))
]

= f̄t(xt−1)− f̄t(x
∗
t )− Ef̃t

[
f̃t(xt)− f̃t(x

∗
t )
]

≥ 1

6β
∥∇f(xt−1)∥2 − Ef̃t

[
f̃t(xt)− f̃t(x

∗
t )
]
. (smoothness)

Rearranging,

∥∇f(xt−1)∥2 ≤ 6β
(
f(xt−1)− f(xt) + Ef̃t

[
f̃t(xt)− f̃t(x

∗
t )
])

.

Summing up over the iterations and taking an unconditional expectation,

E

[
T∑
t=1

∥∇f(xt)∥2
]

≤ 6βE

[
T+1∑
t=2

[
f(xt−1)− f(xt) + (f̃t(xt)− f̃t(x

∗
t ))
]]

≤ 6β

(
f(x1)− f(xT+1) + E

[
T+1∑
t=2

f̃t(xt)− f̃t(x
∗
t )

])
.

Thus the average gradient norm satisfies

E

[
1

T

T∑
t=1

∥∇f(xt)∥2
]
≤ 6β

(
M

T
+

1

T
E

[
T+1∑
t=2

f̃t(xt)− f̃t(x
∗
t )

])

≤ 6β

(
M

T
+

1

T
E
[
DynamicRegretA(f̃2:T+1,x

∗
2:T+1)

])
.

A.1. Applying the reduction with OGD

Recall that the open problem requests the following bound:

1

T

T∑
t=1

E
[
∥∇f(xt)∥2

]
≤ O

(√
Mβ · RegretT (A)

T

)
.

Consider applying the reduction with the lazy FTRL algorithm and its regret bound from Theorem
3 of (Hazan and Kale, 2010),

RegretT (L−OGD) = Dmin
µ

√∑
t

∥∇t − µ∥2 = D
√
Tσ2.
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We obtain:
1

T

T∑
t=1

E
[
∥∇f(xt)∥2

]
≤ O

(
σ

√
Mβ

T

)
.
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